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Over strictly limited composition ranges, the relationship between lattice parameter and 
solid solution composition can often be taken as linear even in multicomponent solid 
solution systems. The constants in the assumed linear equations relating the lattice 
parameter to the atomic percentage of each component may be calculated from lattice 
parameters measured for solution heat-treated alloys of known compositions. The 
subsequent changes in lattice parameters which occur during ageing of these alloys are 
shown to yield useful information about composition changes and the precipitate phases 
which occur during ageing. In particular, if the composition of the precipitate is known, 
then the linear equations may be used to calculate the composition of the remaining solid 
solution alloys. Even if both the composition of the precipitate phase and the remaining 
solid solution are unknown, changes in lattice parameter, combined with known lattice 
parameter versus composition functions, may be used to determine what average 
precipitate compositions are not allowed. These methods are illustrated in the case 
of AI-Cu, Cu-Ni-AI and Cu-Zn-Ni-AI alloys. 

1. I n t r o d u c t i o n  
Considerable work has been carried out concern- 
ingthevariationsinlatticeparameters which occur 
when one element (or compound) is dissolved 
into another. Vegard's law, which was originally 
stated with respect to isostructural, pseudo- 
binary, mixed-salt solid solutions [1 ], assumes a 
characteristic volume associated with each ion. 
This implies a linear change in lattice parameter 
between pure solvent and pure solute, usually for 
solute concentrations given in mol ~.  Vegard's 
law is valid for such solid solution systems 
because the degree of ionization is not altered by 
ion substitution [2]. Most binary metallic 
systems, however, show substantial positive or 
negative deviations from this law [2, 3]. This is 
so because in dilute solutions the electronic state 
of the solute atoms is changed while in higher 
concentration solutions the electronic states of 
both solvent and solute atoms are altered [2]. A 
concise review of the efforts which have been 
made to predict such deviations from Vegard's 
law is available [4]. 

Since the lattice parameter is in most cases a 
slowly varying function of solid solution 
composition, however, it is still possible in many 
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between solid solution composition and lattice 
parameter if this linear relation is restricted to a 
limited composition range. If  the first derivative 
of the relation between lattice parameter and 
composition is everywhere defined over the 
composition range of interest, then by making 
the composition range sufficiently small, the 
approach to linearity can be made arbitrarily 
close. That is, over a composition range xi k to xj k, 
where the superscript denotes the element whose 
atom fraction varies from xi to xj, the lattice 
parameter LP can be assumed to be of the form: 

LP = ~ Vk(x  k - Xo k) (1) 

where x~ k < x 0  k < x j  k and the V k terms are 
constants. In general, for systems where Vegard's 
law is not obeyed, these V k terms will vary 
depending on the composition ranges x 1, x 2 . . . . .  
x ~ about which the V k terms are calculated. 

As discussed in the Appendix, this expression 
is equivalent to a two-term Taylor series expan- 
sion for the lattice parameter versus composition 
function. With the V k constants known it is 
possible in a binary system to calculate the solid 
solution concentration which would give rise to a 
measured lattice parameter, and conversely. In a 
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alloy systems to assume a linear relationship 
ternary system, there will in general be a line (in 
the composition diagram) along which a series of 
alloys will possess a given lattice parameter. Thus 
it is in general not possible to determine solid 
solution alloy compositions for ternary, quatern- 
ary, or higher order systems from lattice 
parameter measurements alone. However, if the 
composition of the precipitating phase is known, 
then in the case of systems of any order the 
composition of the remaining matrix solid 
solution is uniquely determined by the measured 
lattice parameter if the starting composition and 
the constants V k are known. This information is 
very often useful, e.g. in corrosion and oxidation 
studies, and may be difficult to obtain by other 
means, e.g. microprobe methods, if the precipitate 
particle spacing is small. In cases where the 
composition of the precipitate phase is unknown 
measurements of the constants V k together with 
measurements of the changes which occur in 
lattice parameter during precipitation may be 
used to show that certain precipitate composi- 
tions are not allowed. 

The following sections discuss the application 
and use of linear lattice parameter versus 
composition functions in studying solid state 
precipitation in A1-Cu, Cu-Ni-A1, and Cu-Zn-Ni- 
A1 alloys. 

2. Discussion 
2.1. AI-Cu alloys 
Early measurements of the lattice parameter 
changes which occurred during ageing of A1-Cu 
alloys revealed that, for many conditions of heat- 
treatment, changes in hardness substantially 
preceded any observed change in lattice constant 
[5, 6]. These observations were suggested to 
indicate pre-precipitation hardening effects [5]. 
However, it is now accepted that the greater 
rapidity of ageing in highly localized areas, e.g. 
slip bands, when compared with the bulk matrix, 
accounts for the observed delay in lattice para- 
meter change [6]. If the kinetics of ageing of the 
bulk matrix are of particular interest, therefore, 
measurement of changes in lattice parameter may 
provide a more reliable index to the extent and 
kinetics of precipitation than mechanical pro- 
perty measurements. 

In many cases, precipitation reactions do not 
involve great changes in composition. Thus, to 
assume the lattice parameter versus composition 
relationship to be linear over the expected range 
*The data reported by Phillips and Brick [10] were given 
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of composition change due to precipitation will in 
general be a good approximation. In the case of 
A1-Cu alloys, for example, the usual composi- 
tions of age-hardenable alloys extend to about 2 
at. ~ Cu. Letting A1 and Cu be the atomic 
percentages of aluminium and copper, respect- 
ively, and with A and B as constants, it is 
convenient to write the linear relationship of 
lattice parameter and composition first as: 

LP = AA1 + BCu.  (2) 
Since 

A1 + Cu = 100, (3) 
one has 

LP = 100A + (B - A)Cu. (4) 

Combining lattice parameter data from Ellwood 
and Silcock [7], Axon and Hume-Rothery [8], 
and Dorn, et al [9], gives eighteen data points 
covering the range from 0 to 2.17 at. ~ Cu. 
Using Equation 4 and a least-squares analysis of 
these values gives A = + 0.040494 and B = 
+ 0.035657A/at. ~ (at 25~ 

From measurements of the lattice parameter 
taken after different ageing treatments, it is thus 
possible from Equation 2, with A and B known, 
to calculate the atomic fractions of Cu and A1 
remaining in solid solution, and hence, the 
fraction of these elements which have gone to 
CnAlz. This calculation is illustrated using the 
data of Phillips and Brick [10, 11 ], from which 
one may calculate the percentage of Cu precipit- 
ated as a function of ageing time and show this 
together with the hardness data.* This is given 
in Fig. 1. In this case, there is close agreement 
between the point of maximum hardness and the 
completion of precipitation as evidenced by the 
point at which additional Cu is not removed 
from solid solution with continued ageing. For 
the ageing of similar alloys at lower temperatures, 
however, the lattice parameter does not begin to 
change significantly until after the maximum in 
hardness has been passed, because of localized 
acceleration of ageing, e.g. at slip bands [6]. Such 
localized effects may greatly affect mechanical 
properties, but have only a negligible effect on 
the lattice parameter. Thus, the use of both lattice 
parameter and strength data together would 
allow the separation of heat-treatments which 
caused bulk precipitation from those which 
caused only localized precipitation. 

The measurement of lattice parameter changes 
during ageing also permits the determination of 
the solubility limit at a given temperature, using 

incorrectly as A units, but are actually kX units. 
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Figure 1 Hardnes s  versus  ageing t ime for an  A1-2.37 at. ~ Cu alloy, after Phillips and  Brick [10], giving also the  
percentage o f  Cu  precipitated calculated f rom the lattice pa ramete r  values shown.  

a single alloy, provided the composition of the 
second phase is known. In the present case, use 
of the data of Phillips and Brick [10, 11], 
together with the values calculated for A and B 
in Equation 2 shows that after ageing for 9 h at 
300~ only 0.15 at. ~ copper remains in solid 
solution. This value is to be compared with the 
same value, 0.15 at. ~ ,  determined at 300 ~ C by 
Stenzel and Weerts using the more usual 
parametric method [12], as well as to the higher 
value (approximately 0.32) determined by Dix 
and Richardson [13] by metallographic means. 

It is relevant to compare the present lattice 
parameter analysis with the quantitative size- 
factors for binary solutions calculated by King 
[2, 4, 14]. Both analyses are based on the general 
observation that lattice parameter changes are 
linear if taken over sufficiently small regions of 
composition. King, however, is concerned with 
the effect of misfit strain on the physical proper- 
ties of the solvent and hence defines his size- 
factors in terms of the initial slope of the para- 
meter versus composition relationship. 3-he pre- 
sent interest is in precipitation from solution and 
hence the concern is with the linearity of the 
lattice parameter versus composition relationship 
near the saturation solute concentration. If, 
however, the solution is very dilute, and the 
initial slope is maintained till saturation, the two 

analyses then become identical so that the 
constant A in Equation 2 can be identified with 
the lattice parameter of the solvent, while B refers 
to the effective lattice parameter of the solute 
under the co-ordination and electron concentra- 
tion conditions of the solution. This situation is 
approximated to some extent by the relatively 
limited solution of Cu in A1 and hence the term 
100 A in Equation 4 lies within 0.0002A of the 
lattice parameter of A1 [15]. In a more extensive 
solid solution, it is found [2] that the initial slope 
of the lattice parameter versus composition 
relationship is not maintained up to the solute 
saturation limit, so that in general an effective 
lattice parameter must be determined for both 
solvent and solute, which is the basis of Equation 
2. The size-factors defined by King are thus not 
generally applicable to the analysis of precipita- 
tion from such saturated solid solutions. 

The general tendency of a solid solution to 
deviate from the initial linear lattice parameter 
versus composition trend is related indirectly to 
the degree of deviation from a Vegard linear 
relationship between the sizes of the two 
component atoms. To eliminate co-ordination 
effects due to different structures, King [2, 4, 14] 
defines this deviation in terms of the percentage 
difference between the atomic volume of the 
solute and its effective atomic volume in a dilute 
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solid solution. The sign and magnitude of these 
Vegard Law Factors can thus be used as 
qualitative indicators of the change in size of a 
solute atom in a concentrated solution by provid- 
ing a check on the magnitude of the constant B 
in Equation 4. Hence, the constant 100 B for Cu 
in A1-Cu is found to be substantially less than the 
lattice parameter for pure copper, which is 
consistent with the relevant Yegard Law Factor 
of - 12.5% for this solution [2]. The Vegard 
Law Factors cannot be used to derive B with 
precision, however, because they are based on 
lattice parameter versus composition slopes for 
solvent-rich solutions rather than composition 
ranges near solute saturation. There is thus no 
simple alternative to deriving the constants A 
and B in Equation 2 by the process described 
above, using the best lattice parameter data 
available. 

212. Ternary Cu-NI-AI alloys 
The use of limited composition range linear lattice 
parameter versus composition relationships for 
determining the progress of precipi ta t ion 
reactions is not limited to the case of binary 
alloys. Consider for example, the case of the 
ternary Cu-Ni-A1 system, for which an extensive 
set of lattice parameter data is available [16, 17 ]. 
In this case, one may rewrite Equation 1 as 

LP = CCu + DNi + hAl (5) 

where Cu, Ni, and A1 represent the atomic 
percentages of these elements, respectively, and 
C, D, and E, are constants. As before 

Cu + Ni + A1 = 100, (6) 

and thus Equation 5 can be rewritten as 

LP = 1 0 0 C +  ( D -  C) N i +  ( E -  C) A1. (7) 

Since all of the experimental data points will 
not lie on exactly the same plane in lattice 
parameter-composition space, it is necessary to 
use some method of calculating the constants C, 
D, and E, in Equation 5 so as to determine those 
which give the best fit to the observed lattice 
parameter and alloy composition data. This best 
fit (in the least squares sense) may be calculated 
by letting 

~i [L"Pi (Cui, Nii, All, C, D, E) - LPi)] 2 ~_ S ,  
. . . . .  ( 8 )  

where L'-Pi represents the value calculated for the 
lattice parameter at the composition Cui, Nil, 
Ali, using the constants C, D, and E. LP~ is the 
measured value of the lattice parameter at this 
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composition. S is then the sum of the squares of 
the differences between the calculated and 
measured lattice parameter values at each 
composition. Requiring that the value of S be an 
extremal with respect to C, D, and E, gives 

OS aS 0S 
0--C = 0; 0--D = 0; ~--E = 0 .  (9) 

By applying these relations to Equation 8 and 
noting that: 

~L'Pi 0E-Pi ~L"Pi = N i i ;  = All (10) 
~C - Cui; OD DE 

one obtains the following 

~,i 2(L"Pi - LPi) Cui = 0 
~i 2(L--Pi - LPi) Nit = 0 (11) 
~i 2(L'Pi -- I-Pi) All = O. 

This set of three simultaneous linear equations 
can be solved by Gauss-Jordan reduction or 
other methods [18] to yield the best (in the least 
squares sense) values for C, D, and E. 

Combining the data of Gridnev [16] and 
Cocks and Radzinski [17] for the ternary 
Cu-Ni-A1 system with data of Owen and Pickup 
[19] and Coles [20] for the Cu-Ni system and 
with data of Obinata and Wasserman [21] for 
the Cu-A1 system gives sixteen points covering 
the ternary Cu-Ni-A1 system from pure Cu up to 
14.9 at. % A1 and up to 13.70 at. ~o Ni. Using 
these data this calculation yields the values 
0.036147, 0.035156, and 0.038637A/at. % for the 
constants C, D, and E, respectively. The maxi- 
mum deviation of any of the experimental points 
from the plane defined by these constants is 
0.0022~ and the standard deviation of all points 
from this plane is 0.00097A. It will be noted that 
the constants for Cu and A1 are larger and smaller 
respectively, than those determined previously 
for A1 alloys containing up to 2.17 at. % Cu. 
This difference in the values of the linear equation 
constants is, however, what is to be expected 
from the fact that in the ternary case Cu-rich 
alloys are being considered while in the binary 
case Al-rich alloys are examined, remembering 
negative deviations from Vegard's law which 
occur in the A1-Cu system. 

These values, together with Equations 5 or 6 
may be used to calculate the amount of Ni and A1 
remaining in solid solution as a function of 
ageing treatment. This information would be of 
use in, for example, evaluating corrosion 
resistance as a function of ageing, and would be 
difficult to obtain by microprobe methods if the 
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Figure 2 Section of the Cu-Ni-A1 composition triangle showing (curve A) those compositions having the lattice 
parameter shown together with (curves C and B) the average solid solution compositions formed during the 
precipitation of Cu0.~Ni0.sA1 and NiA1. 

interparticle spacing is small, as it is in this system 
for alloys aged at 500~ [22]. 

Consider the observation that, after ageing at 
500~ for 1160 min, the lattice parameter of 
6.53 at. % Ni - 7.11 at. % Al-balance Cu alloy 
decreased from its value of 3.6259A in the solu- 
tion heat-treated condition (850~ for 1 h 
followed by water quenching) to a value of 
3.6236 A [17]. Substitution of these composition 
values into Equation 5 together with the values 
of C, D, and E just given, yields a lattice para- 
meter value of 3.62593 ; hence indicating that, as 
expected, the lattice parameter for the case of the 
solution heat-treated condition is in agreement 
with that predicted from Equation 5. On the 
other hand, the value of 3.6236A for the aged 
alloy, in conjunction with Equation 5 defines an 
isoparameter line in composition space of 
possible matrix solid solution alloys which could 
remain after precipitation. This is shown as curve 
A in Fig. 2. Some of these compositions are, of 
course, not allowed since they include alloys 
which contain more Cu, or Ni, than were 
contained in the original alloy. With this 
restriction, it can be seen that all possible 

remaining compositions are substantially 
depleted in A1 with respect to the original alloy. 

It is also possible to trace out the paths which 
would be followed if the precipitate formed was 
that indicated by possible phase relations in this 
system. Examination of the ternary Cu-Ni-A1 
phase diagram data of Bradley and Lipson, [23 ] 
together with that of Alexander [24], indicates 
that the expected precipitate is NiA1 containing 
dissolved Cu to give a phase of the form 
Cu~Nil_ xA1. For each precipitate composition 
(assumed to remain constant during precipita- 
tion), it is possible to calculate the path in the 
composition triangle which would be followed by 
the matrix as the removal of material from solid 
solution altered the remaining matrix composi- 
tion. These paths have been calculated for two 
precipitate compositions, Cu0.2Ni0. sA1 and NiA1 
and are shown in Fig. 2 as curves C and B, 
respectively. The intersections of these curves 
with curve A define the compositions which the 
matrix alloy would have in each case at the point 
in the precipitation reaction at which the lattice 
parameter was measured. By comparison with 
the starting composition, the fraction of Ni and 
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A1 removed from solid solution may also be 
calculated. Because the line defined by the value 
of the lattice parameter of the aged alloy covers 
only a relatively small range of aluminium 
compositions, it makes relatively little difference 
to the final A1 composition of the matrix alloy 
whether or not NiA1 or Cu0.~Ni0.sA1 is con- 
sidered to be the precipitate phase. If  NiA1 is 
formed, the matrix of the aged alloy will retain 
about 5.6 at. ~ A1, whereas if Cu0.~Ni0.sA1 
forms, about 5.8 at. ~ A1 will be retained. On 
the other hand, the residual Ni content can vary 
from about 5 to about 5.5 at. ~ .  If the composi- 
tion of the precipitate were determined, for 
example, by extraction and chemical analysis, 
then the residual composition of the matrix 
could be precisely determined. This could also be 
found, of course, if the precipitate could be 
completely extracted and weighed, but it would 
be difficult to be sure in such a case that none of 
the precipitate had been lost during the extrac- 
tion process. In conjunction with the present 
method, however, it would only be necessary for 
such extraction to be qualitative in order to 
determine closely the residual composition of the 
matrix. 

2.3 Quaternary Cu-Zn-Ni-AI alloys 
In the cases just considered, we have utilized 
available phase diagram information in conjunc- 
tion with lattice parameter data to determine the 
composition of the matrix alloy after ageing to 
the point of maximum hardness. We now 
consider the case of a quaternary alloy of the 
form Cu-Zn-Ni-A1, where definitive phase 
diagram information is not available. In this case, 
we will show how it is possible by means of 
lattice parameter measurements made as a 
function of ageing time, as well as measurements 
made on a series of solution heat-treated alloys, 
to develop information on the composition of the 
precipitate phase without the necessity of invok- 
ing any phase-equilibrium information. 

As before, let the lattice parameter of the alloys 
in their solution heat-treated condition be 
represented as a function of composition by: 

LP = CCu + D N i +  E A I + F Z n  (12) 
where Cu, Ni, A1, and Zn represent the atomic 
percentages of these elements and C, D, E, and 
F are constants. Using the data of Cocks and 
Radzinski [17] and the method described for 
the ternary case, the constants C, D, E, and F 
may be calculated to be 0.036579, 0.034026, 
0.038984, and 0.037026A/at.~, respectively. 
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The maximum deviation of any experimentally 
determined value from that calculated using 
these constants and Equation 12 is only 0.0007A, 
as shown in Table I. These alloys covered the 
composition range from68 to 78 Cu, 19 to 23 Zn, 
1 to 7 Ni, and 2 to 5 A1. All of the alloys within 
this range were strongly age-hardenable, and it 
was found in every case that the room-tempera- 
ture lattice parameter decreased by ageing at 
500~ [17]. Solution heat-treatments were 
carried out above 800~ followed by water 
quenching. The aim then is to apply Equation 12, 
with the constants C, D, E, and F known, to 
these observed lattice parameter decreases during 
ageing in order to determine what information 
can be deduced concerning the average composi- 
tion of the precipitate(s) which occur in this 
system. 

Since this is a quaternary system, it is possible 
to calculate the change in lattice parameter to be 
expected from the removal of any of the four 
components from solid solution under the 
condition that the atomic percentages of any two 
of the other components remain constant. These 
expected changes may be readily computed from 
the twelve partial derivatives which are similar to: 

~LP~ 0LP / 
~--C~ulzn, A1 -- ~-N-i/zn,.l = C -  D 

= + 0.00255A/at. ~ .  (13) 

It must be remembered that it is the negative of 
each such partial derivative which shows the ex- 
pected initial change in lattice parameterper atom- 
ic percentage of the element removed by precipi- 
tation. Since the precipitate can be expected to be 
composed of more than one element, it is more 
informative to compute the change in lattice 
parameter to be expected from the precipitation 
of a given compound. Since both Cu-Zn-Ni, and 
Cu-Zn-A1 alloys of the approximate composi- 
tions being considered here for Cu-Zn-Ni-A1 
alloys are not significantly age-hardenable, it is 
reasonable to expect that the precipitate will 
contain both Ni and AI. Four possible precipit- 
ates are Ni3A1, NiA1, Ni2AI3, and NiAla. The 
changes in lattice parameter to be expected from 
the removal of these compounds from solid 
solution (at constant Zn concentration) are given 
by (in A/at. ~) :  

~LP ~ _ 

0N--T A1] z n  - 
- 3D - E + 4C = + 0.00525 (14a) 



A L A T T I C E  P A R A M E T E R  M E T H O D  F O R  T H E  I N V E S T I G A T I O N  O F  S O L I D  S T A T E  P R E C I P I T A T I O N  

O L P  

~-N-]--A1 ] zn = 
- D -  E +  2 C =  + 0.00015 (14b) 

aLP ~ _ 
- 

- 2 D -  3 E +  5C = - 0.00211 (14c) 

~LP 

aN-~13/zn  = 
- D -  3 E + 4 C  = - 0.00466 (14d) 

Furthermore, by allowing the zinc to vary, the 
initial rate of change in lattice parameter with 
respect to the precipitation of ternary compounds 
can be calculated similarly. Examination of the 
ternary Cu-Ni-A1 system data of Bradley and 
Lipson [23] shows that NiaA1, NiA1 and Ni2A1 a 
can each dissolve sufficient Cu to become 
CuNi2A1, Cuo.sNio.sA1, and CuNiAla. NiAla 
dissolves only relatively small amounts of Cu. 
There also exists a ternary phase at the composi- 
tion Cu3NiA16 in the Cu-Ni-A1 system. The 
expected initial change in lattice parameter on 
precipitation would be in these cases: 

aLP 

~(CuNizA1) 
- C -  2 D -  E +  4 F =  +0.00449 

0LP 

O(Cuo. 5Ni o. 5A1) 
- 0 . 5 C -  0 . 5 D -  E +  2 F =  - 0.00023 

aLP 

0(CuNiAls) 
- C -  D -  3 E +  4 F =  -0 .03945  

~LP 
0(Cu3NiAI 6) 

- 3C - D - 6E + 10F = - 0.00741 

These calculations show that initially, the 
precipitation of both Ni~A1 and NiA1 would lead 
to an increase, not a decrease, in lattice para- 
meter. Furthermore, even if sufficient copper 
were dissolved into the Ni3A1 to form CuNi~A1, 
the precipitation of this compound would still 
lead to an increase in the lattice parameter of the 
remaining matrix solid solution. In the case of 
NiA1, however, the inclusion of sufficient copper 
to form Cu0.5Ni0.5A1 would mean that precipita- 
tion of this compound would led to a decrease in 
matrix lattice parameter. 

This calculation can still be carried one step 
further. As in the Cu-Ni-A1 case, assume in turn 
that each of the compounds whose formation is 
thought to be possible precipitated to the extent 

that one or more of the elements required for its 
formation is entirely consumed. Then, using 
Equation 12 and the calculated composition of 
the remaining solid solution, the lattice para- 
meter of this solid solution can readily be 
calculated. If  this lattice parameter is greater 
than that actually measured for the aged alloy, 
then the average composition of any precipitate 
phases which might have formed cannot be equal 
to the assumed precipitate composition. On the 
other hand, if the composition calculated for the 
given residual matrix via the use of Equation 12 
gives a lattice parameter that is lower than the 
value measured for the aged alloy, then the 
assumed precipitate composition is possible. This 
consideration does not prove, of course, that the 
assumed precipitate did in fact form, only that its 
formation is or is not inconsistent with the 
observed lattice parameter changes. 

These considerations are illustrated in the case 
of the Cu-Zn-Ni-A1 system by the data in Tables 
I and I[. Table I shows the alloy compositions 
and lattice parameters measured in the solution- 
heat treated state [17], as well as lattice 
parameter values calculated using Equation 12 
and the values for C, D, E, and F just given. 

Table II shows the lattice parameter values 
which were calculated for each alloy, assuming 
that in each case the precipitate indicated formed 
to the maximum extent possible. These calcula- 
tions were made taking into account not only the 
loss of material from solid solution due to 
precipitation, but also the increase in atomic 
percentage of the remaining elements due to the 
fact that the total quantity of elements present in 
solid solution had decreased. If the lattice para- 
meter which is calculated assuming total precipi- 
tation of a particular precipitate composition is, 
in this case, higher than that actually observed, 
then it is clear that precipitate composition which 
was assumed could not account for the observed 
lattice parameter change. Thus, referring to 
Table II, it may be seen that for all alloys the 
precipitation of NiaA1, CuNi2A1, and NiA1 
cannot give rise to the observed lattice para- 
meter changes. In the case of alloys 1, 2, and 3, 
the precipitation of Ni2A1 a could not give rise to 
the observed lattice parameter changes, while 
for alloys 3 and 4 the observed lattice parameter 
changes are less than that which would be ex- 
pected from the complete precipitation of Ni~A13 
Hence, in the case of these latter two alloys, this 
precipitate composition may or may not have 
occurred. Similarly, in the case of the other 
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T A B L E  I Quaternary alloy compositions and lattice parameter (LP) data [17] 

Alloy no. Cu Zn Ni A1 Measured LP of LP calculated 
solution heat-treated from (Equation 12) 
alloy 

1 Balance 19.31 0.95 1.97 3.6688 3.6688 
2 Balance 20.48 3.68 2.32 3.6634 3.6632 
3 Balance 22.19 2.82 6.31 3.6752 3.6758 
4 Balance 21.33 4.43 6.59 3.6727 3.6720 
5 Balance 19.45 7.15 5.03 3.6601 3.6604 

TABLE I I  Lattice parameters (LP) for residual matrix compositions of the Cu-Zn-Ni-A1 alloys of Table I calculated 
on the assumption that for each alloy the compounds indicated formed to the greatest extent possible. 
(Also shown are the lattice parameters measured for the alloys in the aged condition.) 

Alloy no. Measured Calculated LP assuming complete precipitation of the indicated compounds 
LP for the 
aged alloys Ni3A1 CuNi2AI N i A 1  Cu0.~Ni0.sA1 Ni2A13 CuNiAI3 CuaNiAIG NiA13 
[17] 

1 3.6661 (3.6707) (3.6704) (3.6684) (3.6670) (3.6681) 3.6654 3 .6668 3.6658 
2 3.6613 (3.6683) (3.6675) (3.6618) 3.6608 (3.6618) 3.6596 3 .6583 3.6597 
3 3.6734 (3.6816) (3.6809) (3.6773) 3.6713 (3.6740) 3.6667 3 .6639 3.6671 
4 3.6701 (3.6811) (3.6799) (3.6741) 3.6657 3.6682 3.6622 3.6591 3.6621 
5 3.6574 (3.6746) (3.6718) (3.6615) 3.6544 3.6586 3 .6522 3 .6498 3.6523 

precipitate compositions shown in Table II, it 
may be seen that in each case the lattice para- 
meter changes which would be expected f rom 
the maximum possible precipitate formation 
would give rise to a lattice parameter  change 
greater than that which is observed. Therefore, 
the formation of a smaller fraction of any of 
these precipitates could account exactly for the 
observed changes in lattice parameter. These data 
do not provide, of  course, any means for deciding 
which of the possible precipitates did, in fact, 
form. 

This method of precipitate identification by 
elimination clearly will be most  applicable to 
those systems where a large change in lattice 
parameter  results f rom a small change in solid 
solution composition. An extensive collection of 
data exists on the lattice parameters of binary 
and higher systems [15], along with tabulations 
of size-factors based on the initial slopes of  
lattice parameter  versus composition relation- 
ships, for both substitutional and interstitial solid 
solutions [2, 4, 14]. Thus, an assessment may 
possibly be made in advance as to whether or not 
significant lattice parameter  changes are to be 
expected during the course of precipitation in 
particular systems. 

3. Summary 
Over limited ranges of composition, many solid 
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solutions can be assumed to have lattice para- 
meters which vary approximately linearly with 
composition. The constants which relate these 
lattice parameters to each component  element 
of  the solid solution may be calculated from 
lattice parameter  values measured using alloys 
of known composition in the solution heat- 
treated condition. I f  precipitation of a second 
phase occurs during subsequent ageing of these 
alloys, the composition of the remaining solid 
solution will change. In the case of binary alloys, 
the lattice parameter measured for such an aged 
alloy gives directly both the composition of the 
remaining solid solution, as well as, by difference 
the average composition of the phase or phases 
which precipitate. In the case of ternary alloys, 
the allowed composition is a multivalued func- 
tion of the lattice parameter. If, however, only a 
single phase precipitates and the composition of 
tiffs phase is known, then the measurement of the 
lattice parameter  after ageing will give uniquely 
the composition of the remaining solid solution 
alloy. This information may be difficult to 
obtain by other means if the precipitate spacing 
is small, yet is of value in many applications, 
e.g. corrosion and oxidation studies. I f  more 
than one phase precipitates and the ratio in 
which they form is not known, then the composi- 
tion of the remaining solid solution can only be 
stated to lie within certain limits. In the case of 



A L A T T I C E  P A R A M E T E R  M E T H O D  F O R  T H E  I N V E S T I G A T I O N  O F  S O L I D  S T A T E  P R E C I P I T A T I O N  

qua te rna ry  alloys,  i t  is shown tha t  tile de te rmina-  
t ion  o f  l inear  lat t ice p a r a m e t e r  versus compos i -  
t ion  funct ions,  together  wi th  the measurement  o f  
the lat t ice p a r a m e t e r  changes which occur  dur ing  
ageing, may  be  used to stlow tha t  cer ta in  average 
precip i ta te  compos i t ions  are not  possible.  Thus,  
this me thod  provides  a necessary bu t  no t  suffici- 
ent  condi t ion  which m a y  be used to make  
tentat ive ident i f icat ion o f  prec ip i ta te  phases  by  
inference. 
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Appendix 
As writ ten,  Equa t ion  1 is equivalent  to the 
zero th  and  first order  terms o f  the Tay lo r  series 
expans ion  of  the lat t ice pa r ame te r  versus 
compos i t i on  funct ion  abou t  an a rb i t r a ry  ini t ia l  
compos i t ion  Xo 1, x0 z, . . .  x0 k, where each super-  
script  denotes  one of  the componen t  elements and  

Xo k = 1. F o r  a b ina ry  system the comple te  
Tay lo r  series expans ion  can be wri t ten  as 

d(LP(x0)) (x - Xo) 
LPn(x) = LP(x0) + -  dx  1.' 

+ d2(LP(x0)) (x - x0) ~ + . . . 

dx  2 2. '  

d~(LP(xo)) (x - Xo) '~ + - - +  
d x  n n.' 

+ R~(x, Xo) 
C o m p a r i n g  this expression with  Equa t ion  4 
shows tha t  

LP(xo) = 100A,  (3A) 

d(LP(x0)) 
- B - A ,  ( 4 A )  

dx  

and  thus tha t  in E q u a t i o n  4 x is the a tomic  
percentage o f  Cu  and x0 = 0 (pure a luminium).  
Equiva len t  expressions can be derived for  the 
case of  Cu-Ni-A1 or  Cu-Zn-Ni-A1 al loys by  
consider ing s imilar  Tay lo r  series expansions  for  
two and  three independen t  variables,  respectively 
[25]. In  the b inary  case, the remainder  R ( x ,  Xo) 
in t roduced  by te rmina t ing  the Tay lo r  series 
expans ion  for  tke lat t ice p a r a m e t e r  versus 
compos i t ion  funct ion  after the second te rm is 
given by  

d2[LP(xe)] (x -- Xo) ~ 
R ( x ,  xo) - d x  2 2.' 

where, by  the Cauchy  mean  value theorem,  xe 
lies between x0 and  x. Thus,  the e r ror  in the  
l inear  lat t ice p a r a m e t e r  versus compos i t i on  
approx ima t ion ,  Equa t ion  4, is seen to be p r o p o r -  
t iona l  bo th  to the  square  o f  the compos i t ion  
range x - x0, and  to the second der ivat ive o f  
the t rue lat t ice p a r a m e t e r  versus compos i t i on  
funct ion.  Therefore,  in a l loy systems such as 
C u - M n  in which the t rue  lat t ice pa r ame te r  
versus compos i t ion  funct ion  can have a large 
second derivative,  the range over which the 
l inear  lat t ice pa rame te r  versus compos i t ion  
a pp rox ima t ion  is val id  will be reduced In  
addi t ion ,  the mat r ix  compos i t ion  range over  
which this a p p r o x i m a t i o n  is appl ied  should, no t  
b racke t  any phase  boundar ies  since the  deriva-  
t ive of  the t rue  lat t ice p a r a m e t e r  versus comp osi- 
t ion funct ion  changes d iscont inuous ly  at  such 
boundar ies .  

References 
1. L. V E G A R D ,  Z .  Physik, 5 (1921) 17. 
2. ~. w. KING, J. Mater. Sci. 1 (1966) 79. 
3. c. s. BARRETT, "Structure of Metals", 2nd ed. 

(McGraw-Hill, Maidenhead, 1952) 229. 
4. H. w. KING, in "Alloying Behaviour and Effects in 

Concentrated Solid Solutions", ed. by T. B. Massalski 
(Gordon and Breach, New York, 1965) 85. 

5. E. SCHMID and c. WASSERMAN, Metallwirt. 7 (1928) 
1329. 

6. w. L. rINK and D. W. SMITrI, Trans. A I M E  122 
(1936) 284. 

7. E. C. ELLWOOD and J. M. SH.COCK, J. Inst. Metals, 
74 (1948)457. See also E. C. ELLWOOD, ibid 74 
(1948) 721. 

8. H.  J.  AXON a n d  w .  t t U M E - R O T H E R Y ,  Proe. Roy. 
Soc. (London) A193 (1948) 1. 

9. 3. E. OORN, P. PIETROKOWSKY, andT. E. TIETZ,& 
Metals 2 (1950) 933. 

10. A. PHILLIPS and R. M. BRICK, Trans. A I M E  111 
(1934) 94. 

11. Idem, J. Franklin Inst. 125 (1933) 557. 
12. w. STENZEL and J. WEERTS, Metallwirt. 12 (1933) 

343, 369. 
13. E. H. DIX and H. H. RICHARDSON, Trans. A I M E 7 3  

(1926) 560. 
14. n. W. KINO, J. Mater. Sci. 6 (1971) 1157. 
15. w. B. PEARSON "A Handbook of Lattice Spacings 

and Structures of Metals and Alloys", Vol. L 
(Pergamon Press, London, 1958) 311. 

16. v. GRIDNEV, Metallarg. (Leningrad) 4/5 (1939) 13. 
17. F. H. COCKS and w. s. R ADZINSKI, Mater. Sci. Eng. 

7 (1971) 302. 
18. r.  B. HILDEBRAND, "Methods of Applied Mathe- 

matics" (Prentice-Hall, Englewood Cliffs, N. J., 1952). 
19. E. A. OWEN and L. PICKUP, Z. Kristallogr. A88 

(1934) 116. 

779 



F . H .  C O C K S  

20. B. R. COLES, .J'. Inst. Metals 84 (1956) 346. 
21. J. OBII'qATA and G. WASSERMAN, Naturwiss. 21 

(1933) 382. 

22. F. ft. c o c K S, "Strengthening of Brasses by Precipita- 
t ion",  Proceedings of the Second International Con- 
ference on the Strength of Metals and Alloys Vol. 2 
(Amer. Soc. Metals, Metals Park, Ohio, 1970), 631. 

23. A. J. BRADLEY and J. L I P S O N ,  Proc. Roy. Soe 
(London) A167 (1938) 421. 

24. w.  o. ALEXANDER, J. Inst, Metals 63 (1938) 163. 
25.  G.  B. T H O M A S ,  J U N .  "Calculus and Analytic 

Geometry" (Addison-Wesley Reading, Mass., 1953) 
583. 

Received 25 August 1971 and accepted 11 January 1972. 

780 


